
Further 'comment on 'Generalized Bessel functions in tunnelling ionization"

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 527

(http://iopscience.iop.org/0305-4470/38/2/N02)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 527–529 doi:10.1088/0305-4470/38/2/N02

REPLY

Further ‘comment on ‘Generalized Bessel functions in
tunnelling ionization”

H R Reiss1,2 and V P Krainov3

1 Max-Born-Institut, 12489 Berlin, Germany
2 American University, Washington, DC 20016-8058, USA
3 Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia

Received 2   8 September 2004
Published 15 December 2004
Online at stacks.iop.org/JPhysA/38/527

Abstract
J Bauer, in commenting on our tunnelling approximation for the generalized
Bessel function, points out that when the approximation is applied to strong-
field ionization, it is suitable only for the lowest-energy part of an ionization
spectrum. We do not disagree. We point out several things: the results of
Bauer are to be expected; linear polarization results are dominated by the
lowest part of the multiphoton spectrum; and we do not recommend practical
use of this tunnelling approximation, since the asymptotic approximation is
so much better. We show comparisons of momentum distributions calculated
with the tunnelling approximation and those with the complete strong-field
approximation, which show in more detail than spectrum comparisons that
the tunnelling approximation to the generalized Bessel function is applicable
only to the low-momentum part of the distribution, and neglects altogether the
high-momentum portion.

PACS numbers: 02.30.Gp, 02.60.Gf, 32.80.Rm, 42.50.Hz

In a recent paper [1], we showed how one can derive explicitly a tunnelling form of the
generalized Bessel function, Jn(u, v), that arises in theories of strong-field-induced processes.
In his comment [2], Bauer points out that poor results may be obtained for the description of
spectra using the tunnelling approximation, and that total ionization rates will be systematically
understated. We agree with this appraisal, although we regard this as self-evident. The fully-
stated SFA (strong-field approximation) contains momentum components with a broad range
of values, whereas the tunnelling approximation specifically limits possible momenta because
of the u � |v| requirement. Another way to state this is to note that the SFA can be regarded
as a sum of tunnelling and multiphoton contributions, and only the tunnelling part is retained
in our approximation.

The result that the high end of photoelectron spectra is lost in our tunnelling approximation
is a direct and anticipated consequence of the limitation to low-energy electrons as a way of
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Figure 1. Momentum distribution of photoelectrons from ionization of 1s hydrogen by light
of 800 nm, as in an example given by Bauer [2]. Field intensity is such that z1 = 40, where
z1 ≡ 2Up/EB, Up is ponderomotive energy, and EB is atomic binding energy. The distribution is
with respect to the momentum component parallel to the polarization direction of the laser. The
tunnelling limit and the full Jn(u, v) coincide only for small momenta. Relative rates are calculated
by the SFA assuming a Gaussian time distribution in a laser pulse of 25 fs.

extracting the tunnelling limit. The fact that this happens follows immediately from the
property that our approximation to arrive at the tunnelling result effectively discards the high-
energy part of the spectrum. Total rates with the tunnelling limit will necessarily always be
less than those with the full Jn(u, v). The degree to which this property affects total rates
depends strongly on the atom and on field parameters.

It is necessary to emphasize that the SFA [3] is not, ab initio, a tunnelling theory. This
is often overlooked because the ‘KFR’ (Keldysh [4], Faisal [5], Reiss [3]) designation lumps
the SFA together with the Keldysh method. The SFA is always expressed in terms of an index
(the ‘n’ in Jn(u, v)) that plays the role of photon order, with tunnelling following only as a
particular limit; whereas the Keldysh method is an a priori tunnelling approximation. In this
connection, we need to emphasize that specific tunnelling theories such as PPT [6] (Perelomov,
Popov, Terent’ev) and ADK [7] (Ammosov, Delone, Krainov) are unrelated to the tunnelling
limit of the SFA. To reach the tunnelling limit of the SFA, one must discard part of the overall
SFA result, whereas explicit tunnelling theories are complete theories constructed around the
tunnelling hypothesis.

It is instructive to compare the tunnelling limit of the SFA to the complete SFA in terms
of momentum distributions rather than energy (p2/2) spectra, since momentum distributions
emphasize the low end of the spectrum where one expects agreement. Figure 1 shows the
distribution of momenta p� measured in a direction parallel to the polarization vector of the
field for the first example of hydrogen 1s ionization treated by Bauer. One can see clearly
the detailed correspondence for low momenta, as well as the fact that the tunnelling
approximation for Jn(u, v) explicitly lacks the large-momentum components. A more extreme
case of this behaviour is shown in figure 2, for single ionization of neon, where the momentum
distribution has a minimum at p� = 0. Because the tunnelling portion of the ionization for
neon under the stated conditions is small as compared to the overall momentum distribution,
there will be a major difference in total rates, much greater than for the example in figure 1.
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Figure 2. This momentum distribution is comparable to figure 1 except that it is for the case of
neon, which has a dip in the momentum distribution near p� = 0. Wavelength and z1 values are
the same as for figure 1. The result of the dip is that most of the transition rate comes from values
of the momenta that are neglected in the tunnelling approximation to Jn(u, v).

To summarize, we concur with Bauer that it is far better for SFA calculations to employ
the asymptotic approximation [3] to Jn(u, v) rather than the tunnelling approximation. The
asymptotic form of Jn(u, v) is an explicit algebraic expression that computes quickly, despite
its complicated algebraic form. It is an excellent approximation to Jn(u, v) whenever the
frequency is low, and it avoids the lengthy and error-prone complete computation of Jn(u, v)

that requires summation of products of ordinary Bessel functions. Nevertheless, we have
shown [1] in detail how one can express the tunnelling limit of the Jn(u, v) function that
arises in the complete statement of the SFA. The connection is plainly shown in figures 1
and 2. Furthermore, our figures show the underlying reason for discrepancies in total rate
calculations: the SFA contains a part that can be ascribed to tunnelling, plus a part that
one could describe as ‘multiphoton’. (We regard the tunnelling-multiphoton distinction as
misleading, not least because it will vary with calculational method.)
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